第53回(最終回) 天気予報プログラム

前回までに検討した天気予報のアルゴリズムを実装します。

目次

実装する仕様とアルゴリズム

前回までの記事で気象庁が提供している実際のデータを使用して天気予報のアルゴリズムを考えましたが、今回はプログラムの実装仕様を検討してプログラムを完成させたいと思います。

アルゴリズムを検討したデータは1時間毎のデータを使用しましたが、実際は天気予報を判定するのに1時間毎ではなくもう少し短い時間で行いたいと思います。ただあまりにも短い時間間隔ですと、気圧の変化値の精度は落ちそうですので、今回の実装では30分毎の気圧データの変化を見て天気の予測をしたいと思います。

前回検討したアルゴリズムでは、1時間の気圧変化が+1hPa以上であれば晴れ、-1hPa以下であれば雨の予報にしました。これを30分毎の測定にした場合、比例計算で0.5hPaの変化で判定することにします。

プログラムに実装するアルゴリズムは以下のようになります。

  • 30分間の気圧の変化が+0.5hPa以上の場合、晴れの予報をする
  • 30分間の気圧の変化が-0.5hPa以下の場合、雨の予報をする
  • 30分間の気圧の変化が-0.5hPa 〜 +0.5hPaの場合は予報を変えない

また、天気予報は2色LEDに表示しますが、その仕様は以下のようにします。

  • 現在の予報が晴の場合、LEDを赤色で3秒ごとに50ms点灯する
  • 現在の予報が雨の場合、LEDを青色で3秒ごとに50ms点灯する

最後に、BME280とADT7410で測定した温湿度・気圧データですが、これらは1分毎に更新して液晶ディスプレイに表示することにします。

  • BME280で測定した湿度と気圧データは1分毎に更新して液晶ディスプレイに表示する
  • ADT7410で測定した温度データは1分毎に更新して液晶ディスプレイに表示する

それでは、これらのアルゴリズムをプログラムに落としていきたいと思います。

プログラム構造

今まで作成したプログラムに、天気予報のプログラムを追加します。

先ほど検討したアルゴリズムをwhile文の中に実装していきます。すでに温湿度・気圧測定と液晶ディスプレイへの表示の部分はありますので、これに加えて天気予報の部分とLED表示の部分を追加します。

while文は1分に1回まわるようにして、LEDの点滅部分で1分間の時間稼ぎをすることにして見ました。

プログラムのwhile文の構造は以下のようになります。

プログラムのwhile部分の構造

プログラム

プログラム実装ですが、気圧の計算について補足しておきます。

気圧データは「actual_press」変数に入っていますが、これはセンサから取得した値「compensated_press」を100で割った値になります。

actual_pressの場合は0.5以上の変化という判定になりますが、compensated_pressであれば50以上の変化という判定で小数点ではなく整数での判定ができます。プログラムではcompensated_pressが50以上変化したかどうかの判定にしています(プログラム314行目〜326行目)。

他は特に難しいところはないと思いますが、何か不明点ありましたらコメント欄かお問い合わせフォームからご質問いただければと思います。

/*
 * BME280温湿度大気圧センサ
 * ATD7410温度センサモジュール
 * AQM1602液晶ディスプレイモジュール
 * 制御プログラム
 * 
 * https://tool-lab.com/
 *
 * 更新
 *   2018. 2.12: 新規作成
 *   2018. 4. 1: 動作周波数を4MHz、I2Cクロック周波数を100kHzに変更
 *   2018. 7.30: 温湿度・気圧センサデータ表示
 *   2018. 8.12: ADT7410温度データ表示対応、プログラム完成
 *   2018.10.17: 天気予報昨日実装
 * 
 */

//
// PIC16F18857コンィグレーション設定
//
// CONFIG1
#pragma config FEXTOSC = OFF    // External Oscillator mode selection bits (Oscillator not enabled)
#pragma config RSTOSC = HFINT1  // Power-up default value for COSC bits (HFINTOSC (1MHz))
#pragma config CLKOUTEN = OFF   // Clock Out Enable bit (CLKOUT function is disabled; i/o or oscillator function on OSC2)
#pragma config CSWEN = ON       // Clock Switch Enable bit (Writing to NOSC and NDIV is allowed)
#pragma config FCMEN = ON       // Fail-Safe Clock Monitor Enable bit (FSCM timer enabled)
//
// CONFIG2
#pragma config MCLRE = OFF      // Master Clear Enable bit (IO)
#pragma config PWRTE = ON       // Power-up Timer Enable bit (PWRT enabled)
#pragma config LPBOREN = OFF    // Low-Power BOR enable bit (ULPBOR disabled)
#pragma config BOREN = ON       // Brown-out reset enable bits (Brown-out Reset Enabled, SBOREN bit is ignored)
#pragma config BORV = LO        // Brown-out Reset Voltage Selection (Brown-out Reset Voltage (VBOR) set to 1.9V on LF, and 2.45V on F Devices)
#pragma config ZCD = OFF        // Zero-cross detect disable (Zero-cross detect circuit is disabled at POR.)
#pragma config PPS1WAY = ON     // Peripheral Pin Select one-way control (The PPSLOCK bit can be cleared and set only once in software)
#pragma config STVREN = ON      // Stack Overflow/Underflow Reset Enable bit (Stack Overflow or Underflow will cause a reset)
//
// CONFIG3
#pragma config WDTCPS = WDTCPS_31// WDT Period Select bits (Divider ratio 1:65536; software control of WDTPS)
#pragma config WDTE = OFF       // WDT operating mode (WDT Disabled, SWDTEN is ignored)
#pragma config WDTCWS = WDTCWS_7// WDT Window Select bits (window always open (100%); software control; keyed access not required)
#pragma config WDTCCS = SC      // WDT input clock selector (Software Control)
//
// CONFIG4
#pragma config WRT = OFF        // UserNVM self-write protection bits (Write protection off)
#pragma config SCANE = available// Scanner Enable bit (Scanner module is available for use)
#pragma config LVP = ON         // Low Voltage Programming Enable bit (Low Voltage programming enabled. MCLR/Vpp pin function is MCLR.)
//
// CONFIG5
#pragma config CP = OFF         // UserNVM Program memory code protection bit (Program Memory code protection disabled)
#pragma config CPD = OFF        // DataNVM code protection bit (Data EEPROM code protection disabled)

//
// ヘッダファイル
//   int_t型を使用するため、stdint.hをインクルード
//   printfを使用するため、stdio.hをインクルード
//
#include <xc.h>
#include <stdint.h>
#include <stdio.h>


//
// 定数
//

// I2C Ack/Nack定義
#define I2C_ACK  0x00
#define I2C_NACK 0xff

// LCDモジュール
#define LCD_I2C_ADDRESS 0x7c  // LCDモジュールのI2Cアドレス

// ADT7410温度センサ
#define ADT7410_I2C_WRITE_ADDRESS 0x90  // ADT7410のI2Cアドレス(Write)
#define ADT7410_I2C_READ_ADDRESS  0x91  // ADT7410のI2Cアドレス(Read)
#define ADT7410_CONFIG_ADDRESS    0x03  // コンフィグレーション設定アドレス
#define ADT7410_TEMP_ADDRESS      0x00  // 温度格納アドレス(上位8ビット)
#define ADT7410_CONFIG_VALUE      0x80  // 設定値(16-bit分解能指定、他はデフォルト)

// SPIピン設定
#define SPI_SCK    LATCbits.LATC7
#define SPI_MISO   PORTCbits.RC6
#define SPI_MOSI   LATCbits.LATC5
#define SPI_CSB    LATCbits.LATC4

// LEDピン設定
#define LED_BLUE   LATBbits.LATB0  // 雨の予報用
#define LED_RED    LATBbits.LATB1  // 晴の予報用



//
// 関数プロトタイプ宣言
//

// LCDモジュール表示制御関数
void lcdInitialize(void);               // LCD初期化
void lcdClearDisplay(void);             // ディスプレイ全消去
void lcdSendCommandData(uint8_t);       // コマンド送信
void lcdSendCharacterData(uint8_t);     // 1文字表示
void lcdSendString(char *);             // 文字列表示
void lcdLocateCursor(uint8_t,uint8_t);  // カーソル位置指定

// LCDモジュールI2Cプロトコル関数
void lcdI2CProtocol(uint8_t, uint8_t, uint8_t);

// ADT7410温度センサ制御関数
void  adt7410Config(uint8_t);       // 動作設定
float adt7410GetTemperature(void);  // 温度取得

// I2Cプロトコル各信号の生成関数
void    i2cProtocolStart(void);        // スタートコンディション生成
void    i2cProtocolRepeatStart(void);  // リピートスタートコンディション生成
void    i2cProtocolStop(void);         // ストップコンディション生成
void    i2cProtocolSendData(uint8_t);  // 1バイトデータ送信
uint8_t i2cProtocolReceiveData(void);  // バイトデータ受信
uint8_t i2cProtocolCheckAck(void);     // ACK/NACK信号チェック
void    i2cProtocolSendAck(void);      // ACK送信
void    i2cProtocolSendNack(void);     // NACK送信

//   BME280センサー制御
void     bme280Initialization(void);            // BME280の初期化
void     bme280ForcedMeasurement(void);         // 温湿度・気圧データの測定指示
void     bme280ReadTrimmingParameters(void);    // 補正データの読み取り
void     bme280ReadMeasuredRawData(void);       // 補正前の温湿度・気圧データ読み取り
int32_t  bme280CompensateTemperature(void);     // 温度データ補正
uint32_t bme280CompensatePressure(void);        // 気圧データ補正
uint32_t bme280CompensateHumidity(void);        // 湿度データ補正

// SPI通信制御関数
uint16_t spiRead2BytesData(uint8_t address);
uint8_t  spiRead1ByteData(uint8_t address);
void     spiWrite1ByteData(uint8_t address, uint8_t data);
void     spiSend8bit(uint8_t data);
uint8_t  spiReceive8bit();



// クロック周波数
// __delay_ms()関数が時間基準に使用する
#define _XTAL_FREQ 4000000

// グローバル変数
//
// BME280温湿度・気圧読み取りデータ
uint32_t hum_raw, temp_raw, pres_raw;
int32_t  t_fine;

// BME280気温補正データ
uint16_t dig_T1;
int16_t  dig_T2;
int16_t  dig_T3;

// BME280湿度補正データ
uint8_t  dig_H1;
int16_t  dig_H2;
uint8_t  dig_H3;
int16_t  dig_H4;
int16_t  dig_H5;
int8_t   dig_H6;

// BME280気圧補正データ
uint16_t dig_P1;
int16_t  dig_P2;
int16_t  dig_P3;
int16_t  dig_P4;
int16_t  dig_P5;
int16_t  dig_P6;
int16_t  dig_P7;
int16_t  dig_P8;
int16_t  dig_P9;

/// 天気予報定数
enum weather {FINE, CLOUDY, RAINY};



//
// main関数
//
void main(void) {

    // 動作周波数設定
    OSCCON1bits.NDIV = 0b0000;  // 分周1:1
    OSCFRQbits.HFFRQ = 0b010;   // 4MHz
    
    // ピン属性設定
    ANSELA = 0b00000000;
    ANSELB = 0b00000000;
    ANSELC = 0b00000000;
    TRISA  = 0b00000000;
    TRISB  = 0b00000000;
    TRISC  = 0b01001100;
    
    // LED消灯
    LED_RED  = 0;
    LED_BLUE = 0;
    
    // SPI信号線初期設定
    SPI_SCK  = 0;  // クロックを0
    SPI_MOSI = 0;  // マスタ→スレーブを0
    SPI_CSB  = 1;  // チップセレクトを1(=無効)

    //
    // I2C通信ピンのPPS設定
    //
    // 設定ロック解除
    PPSLOCK = 0x55;
    PPSLOCK = 0xAA;
    PPSLOCKbits.PPSLOCKED = 0x00;

    // SCL, SDAピンの割り当て
    SSP1DATPPS = 0x12; // RC2をMSSP1:SDA1に設定
    SSP1CLKPPS = 0x13; // RC3をMSSP1:SCL1に設定
    RC3PPS = 0x14;     // RC3をMSSP1:SCL1に設定
    RC2PPS = 0x15;     // RC2をMSSP1:SDA1に設定

    // 設定ロック
    PPSLOCK = 0x55;
    PPSLOCK = 0xAA;
    PPSLOCKbits.PPSLOCKED = 0x01;
    
    
    //
    // I2C通信設定
    //
    // SMP Standard Speed; CKE disabled; 
    SSP1STAT = 0x80;
    // SSPEN enabled; CKP Idle:Low, Active:High; SSPM FOSC/4_SSPxADD_I2C; 
    SSP1CON1 = 0x28;
    // SBCDE disabled; BOEN disabled; SCIE disabled; PCIE disabled; DHEN disabled; SDAHT 300ns; AHEN disabled; 
    SSP1CON3 = 0x00;
    // Baud Rate Generator = 100kHz 
    SSP1ADD = 0x09;
    
    // LCDモジュール電源安定化時間待ち
    __delay_ms(100);
    
    // LCD初期化
    lcdInitialize();
    
    // LCD表示クリア
    lcdClearDisplay();
    
    // ADT7410温度センサ初期化
    adt7410Config(ADT7410_CONFIG_VALUE);

    // BME280初期化
    //   コントロールレジスタ、補正係数取得
    bme280Initialization();

    // 実際の温湿度・気圧
    float actual_temp;
    float actual_hum;
    float actual_press;

    // BME280補正データ
    int32_t  compensated_temp;
    uint32_t compensated_hum;
    uint32_t compensated_press;
    
    // 気圧測定回数計測
    uint8_t pressure_counter = 0;
    
    // 気圧変化測定用
    uint32_t last_pressure = 0;
    int16_t pressure_diff;
    
    // 天気予報
    enum weather weather_forecast = FINE;
    
    // LED表示用ループカウンタ
    uint8_t led_counter;
    
    // 測定・データ表示
    while(1){
        
        // whileループ内で毎回実行 (約1分に1回)
        // 温度センサのデータを取得して液晶ディスプレイに表示
        //
        lcdLocateCursor(0, 0);
        printf("%5.2f", adt7410GetTemperature());
        lcdSendCharacterData(0xdf);
        lcdSendCharacterData('C');

        // SPI通信で温湿度センサの値を取得
        bme280ForcedMeasurement();
        bme280ReadMeasuredRawData();

        // 取得したデータをキャリブレーション
        compensated_temp  = bme280CompensateTemperature();
        compensated_hum   = bme280CompensateHumidity();
        compensated_press = bme280CompensatePressure();

        // 実際の温湿度に変換
        actual_temp  = (float)compensated_temp  / 100.0;
        actual_hum   = (float)compensated_hum   / 1024.0;
        actual_press = (float)compensated_press / 100.0;

        printf("  %3.0f%%", actual_hum);
        lcdLocateCursor(0, 1);
        printf("%7.2fhPa", actual_press);
        
        //
        // whileループ内で30回に1回実行 (約30分に1回実行)
        // 天気予報実行
        //
        pressure_counter++;
        if( pressure_counter == 30 ) {
            // カウンタクリア
            pressure_counter = 0;
            
            // 30分前の気圧との差分を計算
            pressure_diff = last_pressure - compensated_press;
            last_pressure = compensated_press;
            
            // 天気上り坂かどうかの判定
            if( pressure_diff >= 50 ) {
                weather_forecast = FINE;
            }
            
            // 天気下り坂かの判定
            if( pressure_diff <= -50 ) {
                weather_forecast = RAINY;
            }
        }
        
        // whileループ内で毎回実行 (このループで1分時間稼ぎ)
        // 天気予報データのLED表示
        for( led_counter=0; led_counter<20; led_counter++ ) {
            // 0.05秒LED点灯
            if( weather_forecast == FINE ) {
                LED_RED = 1;
                __delay_ms(50);
                LED_RED = 0;
            } else {
                LED_BLUE = 1;
                __delay_ms(50);
                LED_BLUE = 0;
            }
            // 2.95秒待ち
            __delay_ms(2950);
        }

    }

}


//
// ADT7410温度センサ関数
//

// ADT7410動作設定
void adt7410Config(uint8_t config_value) {
    
    i2cProtocolStart();                              // スタートコンディション生成
    i2cProtocolSendData(ADT7410_I2C_WRITE_ADDRESS);  // スレーブアドレス送信
    i2cProtocolSendData(ADT7410_CONFIG_ADDRESS);     // 動作設定アドレス送信
    i2cProtocolSendData(config_value);               // 動作設定値送信
    i2cProtocolStop();                               // ストップコンディション生成
    
    return;
}

// ADT7410温度取得
float adt7410GetTemperature(void) {
    
    uint8_t temp_high, temp_low;
    int16_t temp_value;
    
    i2cProtocolStart();                              // スタートコンディション生成
    i2cProtocolSendData(ADT7410_I2C_WRITE_ADDRESS);  // スレーブアドレス送信(書き込み指定)
    i2cProtocolSendData(ADT7410_TEMP_ADDRESS);       // 温度データ読み取りのアドレス送信
    i2cProtocolRepeatStart();                        // リピートスタートコンディション生成
    i2cProtocolSendData(ADT7410_I2C_READ_ADDRESS);   // スレーブアドレス送信(読み取り指定)
    temp_high = i2cProtocolReceiveData();            // 1バイトデータ受信
    i2cProtocolSendAck();                            // ACK送信
    temp_low  = i2cProtocolReceiveData();            // 1バイトデータ受信
    i2cProtocolSendNack();                           // NACK送信
    i2cProtocolStop();                               // ストップコンディション生成
    
    // 温度計算
    if( temp_high & 0x80 ) {
        temp_value = ( (temp_high & 0x7f) << 8 ) + temp_low - 32768;
    } else {
        temp_value = ( (temp_high & 0x7f) << 8 ) + temp_low;
    }

    return (float)temp_value / 128.0;
}



//
// LCD制御関数
//

//
// printfがコールする1文字出力関数の定義
//
void putch(uint8_t character) {

    lcdSendCharacterData(character);
    
    return;
}

//
// LCDモジュールに制御コードまたはデータを送信
//
void lcdI2CProtocol(uint8_t address, uint8_t control_code, uint8_t data) {
    
    i2cProtocolStart();                 // スタートコンディション
    i2cProtocolSendData(address);       // アドレス送信
    i2cProtocolSendData(control_code);  // 制御コード送信 (動作設定=0x00/文字表示=0x40)
    i2cProtocolSendData(data);          // データ送信
    i2cProtocolStop();                  // ストップコンディション

    return;
}

//
// 表示文字データ送信
//   0x40の後にデータを送信
void lcdSendCharacterData(uint8_t data){

    // 表示文字のデータを送信する場合の制御コードは0x40
    lcdI2CProtocol(LCD_I2C_ADDRESS, 0x40, data);
    
    // ウエイト
    //   文字表示の場合はウエイトは必要なくても動作しているが
    //   表示されない場合は1ms程度のウエイトを入れる
    // __delay_ms(1);

    return;
}

//
// コマンド送信
//   0x00の後にコマンドを送信
//
void lcdSendCommandData(uint8_t command){

    // コマンドを送信する場合の制御コードは0x00
    lcdI2CProtocol(LCD_I2C_ADDRESS, 0x00, command);

    // ウエイト
    //   データシートではウエイト時間は26.3us以上になっているが、
    //   それより長くしないと初期化できないケースがあるため1msのウエイトを入れる
    __delay_ms(1);
    
    return;
}

//
// ディスプレイ消去
//
void lcdClearDisplay(void){
    
    lcdSendCommandData(0x01);
    
    return;
}

//
// カーソル位置移動
//    引数は水平方向右側プラスのX軸、垂直方向下側プラスのY軸で、それぞれ0から開始
//    左上の座標が(x=0, y=0)
//
void lcdLocateCursor(uint8_t position_x, uint8_t position_y){
    
    // 文字表示位置指定コマンド送信
    lcdSendCommandData( 0x80 + 0x40 * position_y + position_x );
    
    return;
}

//
// 文字列を送信
//
void lcdSendString(char *str){
    
    // strの文字列を*strが0になるまでLCDモジュールに送信
    while(*str) {
        lcdSendCharacterData(*str);
        str++;
    }
    
    return;
}


//
// LCDモジュール初期化
//
void lcdInitialize(void){

    // 初期化コマンド送信
    lcdSendCommandData(0x38); // 2行モードに設定
    lcdSendCommandData(0x39); // 拡張コマンド選択
    lcdSendCommandData(0x14); // 内部クロック周波数設定
    lcdSendCommandData(0x70); // コントラスト設定(C3:C0 = 0b0000に設定)
    lcdSendCommandData(0x56); // 電源電圧が3.3VなのでBooster=ON、コントラスト設定(C5:C4 = 0b10に設定)
    lcdSendCommandData(0x6c); // オペアンプのゲイン設定
    
    // モジュール内電源安定化のための時間待ち
    __delay_ms(200);
    
    // 初期化コマンド続き
    lcdSendCommandData(0x38); // 通常コマンド選択
    lcdSendCommandData(0x01); // ディスプレイ表示内容クリア
    lcdSendCommandData(0x0c); // ディスプレイ表示
    
    return;
}


//
// I2Cプロトコル制御関数
//

// スタートコンディション生成
void i2cProtocolStart() {
    
    // SSP1CON2レジスタのSENビットを1に設定すると
    // スタートコンディションが生成される
    // 発行が完了するとSSP1IFが1になるのでwhile文で待つ
    SSP1IF = 0;
	SSP1CON2bits.SEN = 1;
	while (SSP1IF == 0) {}
    SSP1IF = 0;
    
	return;
}

// リピートスタートコンディション生成
void i2cProtocolRepeatStart() {
    
	SSP1IF = 0;
	SSP1CON2bits.RSEN = 1;
	while (SSP1IF == 0) {}
    SSP1IF = 0;

	return;
}

// ストップコンディション生成
void i2cProtocolStop() {

    // SSP1CON2レジスタのPENビットを1に設定すると
    // ストップコンディションが生成される
    // 発行が完了するとSSP1IFが1になるのでwhile文で待つ
	SSP1IF = 0;
	SSP1CON2bits.PEN = 1;
	while (SSP1IF == 0) {}
	SSP1IF = 0;

	return;
}

// 1バイトデータ送信
void i2cProtocolSendData(uint8_t data) {

    // SSP1BUFに送信したいデータをセットすると、そのデータが送信される
    // 発行が完了するとSSP1IFが1になるのでwhile文で待つ
	SSP1IF = 0;
	SSP1BUF = data;
	while (SSP1IF == 0) {}
    SSP1IF = 0;
    
	return;
}

// 1バイトデータ受信
uint8_t i2cProtocolReceiveData() {
    
	SSP1IF = 0;
	SSP1CON2bits.RCEN = 1;
	while (SSP1IF == 0) {}
    SSP1IF = 0;

	return SSP1BUF;
}

// Ack/Nackチェック
uint8_t i2cProtocolCheckAck() {
    
	uint8_t ackStatus;

	if (SSP1CON2bits.ACKSTAT) {
		ackStatus = I2C_NACK;
	} else {
		ackStatus = I2C_ACK;
	}

	return ackStatus;
}

// Ack送信
void i2cProtocolSendAck() {
    
    // ACKDTにACKをセット(負論理なので0を設定)
	SSP1CON2bits.ACKDT = 0;

    // NACK信号生成
	SSP1CON2bits.ACKEN = 1;
	while (SSP1CON2bits.ACKEN) {}

	return;
}

// Nack送信
void i2cProtocolSendNack() {
    
    // ACKDTにNACKをセット(負論理なので1を設定)
	SSP1CON2bits.ACKDT = 1;

    // NACK信号生成
	SSP1CON2bits.ACKEN = 1;
	while (SSP1CON2bits.ACKEN) {}

	return;
}



//
// BME280初期化関数
//
void bme280Initialization(void) {

    // 動作パラメータ設定
    uint8_t t_sb     = 0;  // スタンドバイ時間は使用しない
    uint8_t filter   = 0;  // フィルタOFF
    uint8_t spi3w_en = 0;  // SPIは4線式(=0)
    uint8_t osrs_t   = 1;  // 温度オーバーサンプリング x1
    uint8_t osrs_p   = 1;  // 大気圧オーバーサンプリング x1
    uint8_t osrs_h   = 1;  // 湿度オーバーサンプリング x1
    uint8_t mode     = 0;  // スリープモード

    // 設定値をフォーマットに合わせる
    uint8_t ctrl_meas_reg = (osrs_t << 5) | (osrs_p << 2) | mode;
    uint8_t config_reg    = (t_sb << 5) | (filter << 2) | spi3w_en;
    uint8_t ctrl_hum_reg  = osrs_h;

    // BME280動作パラメータ書き込み
    spiWrite1ByteData(0xF2, ctrl_hum_reg);
    spiWrite1ByteData(0xF4, ctrl_meas_reg);
    spiWrite1ByteData(0xF5, config_reg);
    
    // センサ処理待ち
    __delay_ms(1000);

    // 補正値読み込み
    //   センサごとに固定ちのため、初期化時のみ読み込む
    bme280ReadTrimmingParameters();

}


//
// 温湿度・気圧データ測定指示
//
void bme280ForcedMeasurement(void) {

    // 動作パラメータ設定
    uint8_t t_sb     = 0;  // スタンドバイ時間は使用しない
    uint8_t filter   = 0;  // フィルタOFF
    uint8_t spi3w_en = 0;  // SPIは4線式
    uint8_t osrs_t   = 1;  // 温度オーバーサンプリング x1
    uint8_t osrs_p   = 1;  // 大気圧オーバーサンプリング x1
    uint8_t osrs_h   = 1;  // 湿度オーバーサンプリング x1
    uint8_t mode     = 1;  // 測定指示(1回測定したらスリープモードに移行)

    // 設定値をフォーマットに合わせる
    uint8_t ctrl_meas_reg = (osrs_t << 5) | (osrs_p << 2) | mode;
    uint8_t config_reg    = (t_sb << 5) | (filter << 2) | spi3w_en;
    uint8_t ctrl_hum_reg  = osrs_h;

    // BME280動作パラメータ書き込み
    spiWrite1ByteData(0xF2, ctrl_hum_reg);
    spiWrite1ByteData(0xF4, ctrl_meas_reg);
    spiWrite1ByteData(0xF5, config_reg);
    
    // 測定待ち
    //   statusレジスタを監視して測定完了を判断すべきだが
    //   while文での動作ができなかったので時間待ちで代用
    __delay_ms(10);
    
    // この段階でBME280の温湿度大気圧レジスタに測定値が格納されている
    // このあと自動的にスリープモードに入る

}


//
// 補正データ読み込み
//
void bme280ReadTrimmingParameters(void) {

    // 気温データ用補正データ
    dig_T1 = spiRead2BytesData(0x88);
    dig_T2 = (int16_t)spiRead2BytesData(0x8A);
    dig_T3 = (int16_t)spiRead2BytesData(0x8C);

    // 気圧データ用補正データ用補正データ
    dig_P1 = spiRead2BytesData(0x8E);
    dig_P2 = (int16_t)spiRead2BytesData(0x90);
    dig_P3 = (int16_t)spiRead2BytesData(0x92);
    dig_P4 = (int16_t)spiRead2BytesData(0x94);
    dig_P5 = (int16_t)spiRead2BytesData(0x96);
    dig_P6 = (int16_t)spiRead2BytesData(0x98);
    dig_P7 = (int16_t)spiRead2BytesData(0x9A);
    dig_P8 = (int16_t)spiRead2BytesData(0x9C);
    dig_P9 = (int16_t)spiRead2BytesData(0x9E);

    // 湿度データ用補正データ用補正データ
    dig_H1 = spiRead1ByteData(0xA1);
    dig_H2 = (int16_t)spiRead2BytesData(0xE1);
    dig_H3 = spiRead1ByteData(0xE3);
    dig_H4 = (int16_t)((spiRead1ByteData(0xE4) << 4) | (spiRead1ByteData(0xE5) & 0x0F));
    dig_H5 = (int16_t)((spiRead1ByteData(0xE6) << 4) | (spiRead1ByteData(0xE5) >> 4));
    dig_H6 = (int8_t)spiRead1ByteData(0xE7);

}


// 
// 補正前の生の温湿度・気圧データ読み込み
// 
void bme280ReadMeasuredRawData() {

    // データ読み取り用配列
    uint32_t data[8];

    // スレーブセレクトアクティブ
    SPI_CSB = 0;

    // 読み込み開始アドレス指定
    spiSend8bit(0xF7 | 0b10000000);

    // 8バイト分のデータ読み込み
    for(int8_t i=0; i<8; i++){
      data[i] = spiReceive8bit();
    }

    // スレーブセレクトインアクティブ
    SPI_CSB = 0;

    // 読み込みしたデータから気温、湿度、気圧データを生成
    pres_raw = (data[0] << 12) | (data[1] << 4) | (data[2] >> 4);
    temp_raw = (data[3] << 12) | (data[4] << 4) | (data[5] >> 4);
    hum_raw  = (data[6] <<  8) | data[7];

}

//
// 気温データ補正
//   何をしているのかよくわからない
// 
int32_t bme280CompensateTemperature() {
  
    int32_t var1, var2, T;

    var1 = ((((temp_raw >> 3) - ((int32_t)dig_T1<<1))) * ((int32_t)dig_T2)) >> 11;
    var2 = (((((temp_raw >> 4) - ((int32_t)dig_T1)) * ((temp_raw>>4) - ((int32_t)dig_T1))) >> 12) * ((int32_t)dig_T3)) >> 14;
    t_fine = var1 + var2;
    T = (t_fine * 5 + 128) >> 8;

    return T; 

}


//
// 気圧データ補正
//   何をしているのかよくわからない
// 
uint32_t bme280CompensatePressure() {

    int32_t var1, var2;
    uint32_t P;

    var1 = (((int32_t)t_fine)>>1) - (int32_t)64000;
    var2 = (((var1>>2) * (var1>>2)) >> 11) * ((int32_t)dig_P6);
    var2 = var2 + ((var1*((int32_t)dig_P5))<<1);
    var2 = (var2>>2)+(((int32_t)dig_P4)<<16);
    var1 = (((dig_P3 * (((var1>>2)*(var1>>2)) >> 13)) >>3) + ((((int32_t)dig_P2) * var1)>>1))>>18;
    var1 = ((((32768+var1))*((int32_t)dig_P1))>>15);
    if (var1 == 0)
      return 0;

    P = (((uint32_t)(((int32_t)1048576)-pres_raw)-(var2>>12)))*3125;
    if(P<0x80000000)
      P = (P << 1) / ((uint32_t) var1);   
    else
      P = (P / (uint32_t)var1) * 2;

    var1 = (((int32_t)dig_P9) * ((int32_t)(((P>>3) * (P>>3))>>13)))>>12;
    var2 = (((int32_t)(P>>2)) * ((int32_t)dig_P8))>>13;
    P = (uint32_t)((int32_t)P + ((var1 + var2 + dig_P7) >> 4));

    return P;

}

//
// 湿度データ補正
//   何をしているのかよくわからない
// 
uint32_t bme280CompensateHumidity() {

    int32_t v_x1_u32r;

    v_x1_u32r = (t_fine - ((int32_t)76800));
    v_x1_u32r = (((((hum_raw << 14) -(((int32_t)dig_H4) << 20) - (((int32_t)dig_H5) * v_x1_u32r)) + 
             ((int32_t)16384)) >> 15) * (((((((v_x1_u32r * ((int32_t)dig_H6)) >> 10) * 
             (((v_x1_u32r * ((int32_t)dig_H3)) >> 11) + ((int32_t) 32768))) >> 10) + ((int32_t)2097152)) * 
             ((int32_t) dig_H2) + 8192) >> 14));
    v_x1_u32r = (v_x1_u32r - (((((v_x1_u32r >> 15) * (v_x1_u32r >> 15)) >> 7) * ((int32_t)dig_H1)) >> 4));
    // v_x1_u32r = (v_x1_u32r < 0 ? 0 : v_x1_u32r);
    if( v_x1_u32r < 0 ){
        v_x1_u32r = 0;
    }
    // v_x1_u32r = (v_x1_u32r > 419430400 ? 419430400 : v_x1_u32r);
    if( v_x1_u32r > 419430400 ) {
        v_x1_u32r = 419430400;
    }

    return (uint32_t)(v_x1_u32r >> 12);

}


//
// SPIデータを指定アドレスから2バイト読み込み
// 
uint16_t spiRead2BytesData(uint8_t address) {

    uint8_t  data_low, data_high;  // 読み込んだ1バイトデータ格納用
    uint16_t data;  // 2バイトデータ用

    // チップセレクトを0にしてセンサモジュールとの通信開始
    SPI_CSB = 0;

    // 読み込みデータアドレス指定
    spiSend8bit(address);

    // 指定アドレスとその次のアドレスのデータを2バイト読み込み
    data_low  = spiReceive8bit();
    data_high = spiReceive8bit();

    //16ビットデータにする
    data = (data_high << 8) | data_low;

    // チップセレクトを1にして通信終了
    SPI_CSB = 1;

    return data;

}


//
// SPIデータを指定アドレスから1バイト読み込み
// 
uint8_t spiRead1ByteData(uint8_t address) {

    // 受信データ格納変数
    uint8_t data;

    // チップセレクトを0にしてセンサモジュールとの通信開始
    SPI_CSB = 0;

    // SPI通信手順によりアドレスを送信
    spiSend8bit(address);

    // SPI通信手順によりデータを受信
    data = spiReceive8bit();

    // チップセレクトを1にして通信終了
    SPI_CSB = 1;

    // 受信したーデータを返す
    return data;

}


//
// SPIデータを指定アドレスに1バイト書き込み
//
void spiWrite1ByteData(uint8_t address, uint8_t data) {

    // チップセレクトを0にしてセンサモジュールとの通信開始
    SPI_CSB = 0;

    // アドレス指定(書き込みは最上位ビット0)
    spiSend8bit(address & 0b01111111);

    // データ書き込み
    spiSend8bit(data);

    // チップセレクトを1にして通信終了
    SPI_CSB = 1;
  
}

//
// SPIデータ8ビット書き込み
//   SCK/MOSI制御のための関数であるため
//   スレーブセレクト信号はこの関数の前後で制御すること
void spiSend8bit(uint8_t data) {

    // 8ビット分繰り返す
    for (int8_t i=7; i>=0; i--) {

        // (1)クロックを0にする
        SPI_SCK = 0;
        
        // (2)MOSIにデータをセットする
        if( data & (1<<i) ) {
            SPI_MOSI = 1;
        } else {
            SPI_MOSI = 0;
        }
      
        // (3)クロックを1にする
        SPI_SCK = 1;
    }

}

//
// SPIデータ8ビット読み込み
//   SCK/MOSI制御のための関数であるため
//   スレーブセレクト信号はこの関数の前後で制御すること
//
uint8_t spiReceive8bit() {

    // 受信データ格納変数
    uint8_t read_data = 0;

    // 8ビット分繰り返す
    for (int8_t i=7; i>=0; i--) {

        // 受信データ変数を1ビット左シフト
        read_data <<= 1;

        // (1)クロックを0にする
        SPI_SCK = 0;
        
        // (2)クロックを1にする
        SPI_SCK = 1;

        // (3)この時点でセンサからのデータを読めるので、MISOのピン状態を読む
        if(SPI_MISO){
            read_data |= 1;
        }
    }

    // 受信したデータを返す
    return read_data;

}

検討課題

以上でPICマイコン電子工作入門シリーズは終わりますが、この天気予報プログラムはまだ以下のような課題があります。最後のチャレンジとして、この天気予報プログラムの改良をしてみていただければと思います。

  • ダラダラ変化
    上のプグラムは、気圧がダラダラ変化した時に予報が不正確になります。例えば、急に気圧が低下して雨の予報をした後、気圧がダラダラと上昇して天気がよくなった場合、雨の予報から晴れの予報に変更するタイミングがなくなってしまいます。そこで、気圧がダラダラと変化した場合の対策も必要そうです。
  • 測定値の誤差・ゆらぎ
    気圧は1分間に1回測定しています。測定頻度としては十分だと思いますが、天気予報のために30分に1回、その時に測定した気圧データを使用しています。問題は、その測定値がたまたま何かの原因でブレた場合(ドアの開け閉め、換気扇のON/OFFなど)、場合によっては天気予報に影響が出てしまいます。
    そこで、気圧データはその時の測定値を使用するのではなく、過去何回かの測定値データの平均値を使った方が安定します。ただ平均値を求めるためにたくさんのデータを使用すると現在の気圧データの精度が落ちますので、過去2〜3回(2〜3分)の気圧データの平均値を求めるようにすると誤差やゆらぎの影響を軽減することができますので、そのようにプログラム実装してみてください。
  • 曇りの予報
    現在は晴と雨の予報のみですが、できれば曇りの予報も出したいところです。曇りはなかなか難しいですが、気圧と天気の関係のグラフを見ていると、急激な気圧変化はなくても、だらだらと気圧が下がっていく時に曇りになる確率が高いように見えます。そこで「気圧がゆっくり下がっていく」というのはどのように判定すればよいかアルゴリズムを考えてプログラム実装してみるのも面白いと思います。

更新履歴

日付 内容
2018.10.18 新規投稿
2019.5.14 BME280の強制測定モードの際、測定が完了するまで待つ処理(10ms)を追加
通知の設定
通知タイミング
guest
0 コメント
本文中にフィードバック
全てのコメントを見る
junjun
junjun
4 年 前

PICの勉強でお世話になってます。

温度/湿度/気圧計を作成し、リビングで活躍しています。
作成後2ヶ月、表示に不具合が発生しました。
不具合は気圧の横に、温度が表示されるのです。
電源を入れ直すと元に戻るのですが、2度目の不具合が発生しました。
プログラムを見直したのですが、問題はないと思います。(コピペですが^^;)
回路は、USBからレギョレータ(3.3V)の電源を使用しています。
何か、情報がありましたら共有をお願いします。

comment image comment image

管理者
管理者
返信  junjun
4 年 前

コメントどうもありがとうございました。またお返事が遅くなってしまい申し訳ございませんでした。

私もリビングで運用していますが、特にこのような現象は見られませんでしたが、実際に発生していますので何かしら不具合原因があるのだと思います。

気圧のすぐ後に気温が表示されている、ということは、気温の表示位置が(0, 0)になっていない、ということですので、このあたりの対策が必要なのだと思います。

すみません、即答はできませんが原因と対策を考えてみます。何か分かりましたらこのコメントに返信いたします。

ところで、カバーををつけられたんですね。画像をみたときに何かの製品かと思いましたが、よくよく見るとLCDディスプレイの枠がありましので、カバーをつけられたんだな、と思いました。自作のものはなんだか愛着が出てきますよね。さらに中身もわかっていて、カスタマイズも自由ですので、市販製品にはない楽しみがあると思います。ぜひ天気予報のアルゴリズムも改良するなど楽しんでいただければと思います。

目次